ГЛАВА 2

ПРИНЦИПЫ ПОСТРОЕНИЯ БАЗЫ ДАННЫХ NASA

2.1. Базы данных как источники актинометрической информации для проектирования солнечных установок

Переход к современным методам регистрации метеорологических данных с использованием машиночитаемых носителей естественным образом привел к созданию баз данных (БД) климатологической и, в частности, актинометрической информации. На сегодняшний день существует значительное число таких баз данных. Они различаются по источникам информации (наземные измерения или спутниковые наблюдения); периодам сбора данных (от 1 до 30 лет); представлением характеристик солнечной радиации (получасовые, часовые, месячные, годовые значения); возможностям пространственной интерполяции.

Одна из первых актинометрических баз данных была выполнена в виде приложения к Европейскому атласу солнечной радиации (E.S.R.A). База содержала значения месячных сумм суммарной и рассеянной радиации с 1966 по 1975 гг. для 340 пунктов наблюдения в Европе и Северной Африке. Издание Европейского атласа 2000 г. (The European Solar Radiation Atlas, версия 2000 г.) помимо книжной формы было представлено компакт-диском. Атлас охватывает территорию 30° з.д. ...70° в.д.; 25...75° с.ш.; интервал измерений в этом издании продлен до 1990 г., количество пунктов наблюдения увеличилось до 586. В БД представлены карты распределения месячных значений суммарной и прямой солнечной радиации, приходящей на нормальную к лучу поверхность (кВтч/м²). При этом используются результаты как наземных, так и спутниковых измерений и моделирования в целях проведения интерполяционных процедур; дополнительно к актинометрическим данным приведены значения температуры и атмосферного давления.

Швейцарская база данных МЕТЕО-NORM, шестая версия которой вышла в 2007 г., является одной из наиболее полных по наполнению (суммарная, прямая и рассеянная солнечная радиация, продолжительность солнечного сияния, температура, давление и влажность атмосферного воздуха, скорость ветра, осадки). В METEONORM включены данные несколько баз данных, охватывающих различные части мира, проведена проверка их реалистичности. В редакции 6.0 представлены данные GEBA (Global Energy Balance Archive), World Meteorological Organization (WMO/OMM) и Швейцарской базы данных (составленной по материалам MeteoSwiss). Всего используются климатологические данные 7756 метеостанций по всему миру. Периоды осреднения: 1961-1990 и 1996-2005 (для температуры, влажности, осадков и скорости ветра). Для областей с малой плотностью станций погоды используются данных спутниковых измерений. В рассмотрение включены прогнозы климатических изменений.

Информация по примерно тысяче метеостанций (суммарная солнечная радиация, температура окружающего воздуха, скорость ветра) содержится в программных продуктах RETScreen (Канада). Следует отметить, что сегодня любое претендующее на охват значительной территории расчетное исследование установок, использующих энергию солнца и ветра, в качестве «побочного продукта» приводит к накоплению структурированных климатологических данных. Так, авторы настоящей работы располагают массивом данных по месячным суммам суммарного солнечного излучения, температуре и влажности окружающего воздуха и скорости ветра для 1036 метеостанций по всему миру, собранным с использованием данных RETScreen, TRNSYS и отечественных метеостанций [1, 17, 18].

Если говорить о фактических данных и возможности использования для оценки ресурсов солнечной энергии результатов актинометрических измерений на станциях РФ, то помимо климатических справочников существует возможность использовать on-line доступ к массивам накопленных данных, аккумулированных в Мировом центре радиационных данных (МЦРД, World Radiation Data Centre – WRDC). Эта

структура, которая была создана в 1964 г. как лаборатория ГГО им. А.И. Воейкова, выступает в настоящее время также как специализированный центр Всемирной метеорологической организации (WMO). В настоящее время МЦРД располагает информационно-поисковой системой с архивом и систематически пополняемой базой данных о составляющих радиационного баланса мировой актинометрической сети. Доступ удаленных пользователей к информационным ресурсам МЦРД открыт по адpecy: *http://wrdc.mgo.rssi.ru*. На сайте МЦРД прописаны процедуры выполнения запросов. Имеется доступ к данным по станциям измерения, входящим в сеть WMO.

Бурное развитие в последнее время методов спутниковых наблюдений и измерений позволяет подойти к задаче пространственной интерполяции актинометрических данных иначе, поскольку использование космических аппаратов дает возможность равномерно «покрыть» достаточно большие территории. Наземные станции актинометрического наблюдения при этом играют роль точек привязки спутниковых данных и верификации моделей распространения солнечного излучения в атмосфере. Известны две базы данных, основанных на спутниковых наблюдениях. Одна из них - S@tel-Light – содержит результаты дистанционных измерений, проведенных в 1996-2000 гг. База содержит получасовые суммы суммарной и рассеянной солнечной радиации, имеется

возможность пространственной интерполяции данных по Европе и Северной Африке. Заказанные пользователем данные высылаются ему электронной почтой. Вместе с тем, база содержит только актинометрические данные, информация о температуре окружающего воздуха и скорости ветра в ней отсутствует. Для каких-либо оценок применительно к территории России база S@tel-Light не пригодна, поскольку содержит данные лишь для относительно небольшой зоны в Европейской части страны.

Другая БД, созданная Национальным агентством по аэронавтике и исследованию космического пространства США (NASA), подробно описанная ниже, для использования на территории России более приемлема.

Информация о некоторых базах актинометрических данных представлена в таблице 2. Важно подчеркнуть, что, как правило, БД подготовлены на основе информации, предоставленной национальными метеорологическими организациями, и таким образом, в той или иной мере повторяют данные национальных справочников, в том числе российских. Этим и определяется их главный недостаток - необходимость интерполяции и экстраполяции данных, - обусловленный невысокой плотностью расположения существующих метеостанций. Применительно к условиям России эта проблема стоит особенно остро из-за большой территории и довольно редкой сети актинометрических наблюдений.

Таблииа 2

Характеристики основных баз данных по солнечной радиации

Характеристики	E.S.R.A. 1996	E.S.R.A. 2000	METEONORM 6,0	Climate 1	WRDC	S@tel-Light
Форма представления	Книга с дискетой	CD-ROM с приложениями в 2-х книгах	CD-ROM и справочник	CD-ROM	Интернет	Интернет
Условия доступа	Оплачивается	Оплачивается	Оплачивается	Оплачивается	Бесплатно	Бесплатно
Web - адрес	-	www.ensmp.fr/Fr/Services/ Presses ENS	www.meteotest.chl	www.climate- one.de	http://wrdc.mgo.rssi.ru	www.satellight.com
Масштабы применения	Европа и Северная Африка	Европа и Северная Африка	Всемирная	Всемирная	Всемирная	Европа и Северная Африка
Представленные величины ¹	S, D	S, D, T, P	S, D, T, V, W, P	S, T, V, W	S, D	S, D
Период измерений, годы	1966–1975	1966–1990	1961–1990 и 1996–2005	Различные	1964–2009	1996–2000
Детализация значений ²	m	m, h	m, h	m	m	h h
Число пунктов наблюдения	340	586	7756	>1200	1195	_
Пространственная интерполяция	Нет	нет	Да	нет	нет	да

 ^{1}S – суммарная солнечная радиация, D – рассеянная солнечная радиация, T – температура воздуха, P – атмосферное давление, V – скорость ветра, W – влажность воздуха; ^{2}m – среднемесячные значения, h – среднечасовые значения, hh – получасовые значения.

2.2. База климатологических ЛАННЫХ NASA SURFACE **METEOROLOGY AND SOLAR ENERGY:** МЕТОДЫ ПОЛУЧЕНИЯ И ПРЕДСТАВЛЕНИЯ ДАННЫХ

Большие возможности оценки гелиоресурсов открываются в связи с разработкой и предоставлением в открытом доступе базы данных Национального агентства по аэронавтике и исследованию космического про-

странства США NASA SSE (NASA Surface meteorology and Solar Energy), первая версия которой появилась в 1997 г. Первоначально она представляла собой массив данных, полученных в результате спутниковых измерений радиационного баланса земной поверхности, проводившихся в рамках программы World Climate Research Program's International Satellite and Cloud Climatology Program (ISCCP) в период 1983–1993 гг. В настоящее время база данных NASA оперирует массивом результатов спутниковых и наземных измерений за период $01\ 07\ 1983$ – 30.06.2005. По результатам измерений с использованием различных моделей распространения солнечного излучения в атмосфере рассчитываются значения месячных сумм солнечной радиации, падающей на горизонтальную поверхность и других актинометрических и метеорологических характеристик. Учитываются особенности различных климатических зон земного шара, в том числе характер отражения излучения от земной поверхности (альбедо), состояние облачности, загрязнение атмосферы аэрозолями. Методология проекта в целом разрабатывалась с участием: The DOE National Renewable Energy Laboratory (NREL, CIIIA); The World Radiation Data Center (WRDC, Санкт-Петербург, Россия); The Swiss Federal Institute of Technology in Zurich (the Global Energy Budget Archive (GEBA), Швейцария); Natural Resources Canada (RETScreen database, Канада); The NOAA Climate Monitoring and Diagnostics Laboratory (CMDL, CIIIA).

Отработка и апробация методики пересчета осуществлялась с привлечением данных наземных измерений для того же временного диапазона (проект GEOS-4 – Goddard Earth Observation System), в том числе, для нескольких российских метеостанций. Наземные метеостанции, актинометрические измерения которых использовались для верификации расчетных моделей, приведены на рис. 9 и 10.

Рассчитанные значения сумм солнечной радиации интерполированы на сетку 1°×1° по всему земному шару (измерения и расчеты выполнялись для сетки 2,5°×2,5°). Массив данных структурирован по возможным потребителям (фотоэлектрические панели и солнечные коллекторы, солнечные кухни, системы с аккумуляторами энергии и тепла). База данных доступна через Интернет (*http://eosweb.larc.nasa.gov/sse/*) и содержит следующие группы параметров:

Рис. 9. Станции актинометрических наблюдений, данные которых использовались для верификации расчетов рассеянной радиации по методу Пейджа.

Рис. 10. Станции актинометрических наблюдений, данные которых использовались для верификации расчетов интенсивности прямой солнечной радиации (на нормальную лучу по верхность) и рассеянной радиации.

1. Среднемесячные дневные суммы (кВтч/м²) прямой, рассеянной и суммарной солнечной радиации, поступающей на горизонтальную и наклонную (широта–15°, широта, широта+15°) плоскость, на следящую за Солнцем поверхность (для прямой радиации), а также на плоскость, наклоненную

под оптимальным (с точки зрения максимума прихода радиации) углом (для суммарной радиации), месячные и годовое значения оптимальных углов наклона. Среднемесячные дневные суммы радиации при ясном небе. Среднемесячная интенсивность (кВт/м²) суммарной солнечной радиации, падающей на горизонтальную поверхность в полдень.

2. Среднемесячное число ясных дней. Минимальное и максимальное отклонения от среднемесячной радиации (%). Среднемесячное значение индекса прозрачности, значение индекса прозрачности при ясном небе, количество дней без Солнца.

3. Характеристики положения Солнца (солнечная геометрия).

4. Минимальная доступная солнечная радиация (%) в течение различных периодов последовательных дней (1, 3, 7, 14, 21 день), дефицит солнечной радиации по сравнению с ожидаемой в течение различных периодов последовательных дней (1, 3, 7, 14, 21 день).

5. Параметры облачности: среднемесячное количество облаков в течение светового дня (%), частота ясного и облачного неба.

6. Температура: среднемесячная температура воздуха на высоте 10 м над уровнем земли (°С), дневной диапазон изменения температуры, количество дней с прогревом воздуха выше/ниже 18, 10 и 0°С, среднемесячная температура поверхности почвы, минимальные/максимальные температуры и амплитуды колебаний температуры почвы, среднемесячные значения точки росы. 7. Ветер: среднемесячные значения скорости ветра на высоте 50 м над поверхностью земли (м/с), минимальные и максимальные отклонения от среднемесячной скорости ветра на высоте 50 м, повторяемость (процент времени) ветра, имеющего скорость в интервалах (0...2)...(19...25) м/с, среднемесячное направление ветра на высоте 50 м; среднемесячные значения скорости ветра на высоте 10 м над поверхностью земли (для условий местности типа «аэропорт») и разница этих скоростей и скоростей ветра на высоте 50 м (м/с). Скорость ветра на высоте до 300 м для разных типов поверхности.

8. Среднемесячные значения относительной и абсолютной влажности, атмосферного давления, количества осадков.

9. Вспомогательная информация: Среднемесячные дневные суммы солнечной радиации (кВтч/м²) на верхней границе атмосферы, альбедо земной поверхности.

Ранее в разделе 1.3.1. были приведены характеристики временной структуры рядов солнечной радиации, которые, согласно выполненным ранее разработкам ГГО, представляют интерес для геолиотехнических расчетов. Среди них: средние многолетние суммы радиации (нормы); экстремальные суммы радиации; средние квадратичные отклонения; коэффициенты асимметрии и эксцесса. В базе данных NASA приведены среднемесячные и среднегодовые значения широкого набора актинометрических и метеорологических величин, а также экстремальные (максимальные и минимальные) значения падающей солнечной радиации. Номенклатура этих данных не позволяет, однако, провести расчеты средних квадратичных отклонений и коэффициентов асимметрии и эксцесса. В то же время в качестве исходной информации для расчета параметров аккумуляторных батарей, или иных энергозапасающих систем приводятся:

1) минимальная доступная солнечная радиация как доля от средней доступной величины энергии в течение различных периодов последовательных дней (1, 3, 7, 14, 21 день);

2) дефицит падающей на горизонтальную поверхность солнечной радиации по сравнению с ожидаемым средним значением в течение различных периодов последовательных дней (1, 3, 7, 14, 21 день);

3) предполагаемое число дней без солнца в течение различных периодов последовательных дней (1, 3, 7, 14, 21 день);

4) доступный избыток солнечной радиации как доля от среднего ее значения в течение различных периодов последовательных дней (1, 3, 7, 14, 21 день).

Этот набор данных представляет результат обработки исходной информации и отражает в определенной мере разницу в подходах к адаптации актинометрических данных для непосредственного использования в гелиотехнических расчетах

Остановимся на общих положениях, лежащих в основе методов построения базы климатологических данных NASA.

2.3. Методы расчета плотности потока солнечной радиации, падающей на горизонтальную и наклонную поверхности, выбор регионов, сходных по климатическим условиям

Выше уже отмечено, что при расчетах на основе данных спутниковых наблюдений необходимо учитывать региональные климатические особенности. Для проведения расчетов и анализа результатов при построении базы данных NASA принята классификация климатических зон по [19] (карта климатических зон приведена на рис. 11).

Классификация основана на количестве длинноволновой (инфракрасной) солнечной

Рис. 11. Схема разбиения территории на климатические области (регионы).

Рис. 12. Среднемесячные значения индекса прозрачности атмосферы в январе (сверху) и в июле (снизу).

радиации, поглощенной земной поверхностью, а также содержании аэрозоля, водяного пара, озона и т.д. в атмосфере. Учтены и факторы, оказывающие влияние на коротковолновую радиацию, поглощаемую поверхностью Земли: альбедо земной поверхности, облачность, индекс прозрачности атмосферы (представлен на рис. 12).

Среднемесячный индекс прозрачности атмосферы *k* определяется здесь как отно-

шение месячной суммы падающей солнечной радиации на уровне земной поверхности H к месячной сумме солнечной энергии, приходящей на горизонтальную поверхность на верхней границе атмосферы H_0 (см. раздел 1.1). Этот параметр характеризует ослабление потока солнечной энергии в атмосфере в результате поглощения и рассеяния на аэрозолях, а также молекулярного поглощения, поглощения озоном и водяным паром.

Основой для расчета потока солнечной радиации, падающей на поверхность земли, Н, является усовершенствованный алгоритм Пинкера и Ласло [20], использованный в проекте NASA «Глобальная энергия и гидрологический цикл. Радиационный баланс земной поверхности» (NASA/Global Energy and Water Cycle Experiment, GEWEX. Surface Radiation Budget, SRB), а также результаты Программы исследования климата Земли с помощью международной спутниковой системы и климатологической программы NASA по изучению облаков (NASA World Climate Research Program's International Satellite and Cloud Climatology Program (ISCCP, http://isccp.giss.nasa.gov/).

Данные о содержании в атмосфере водяного пара были получены в результате спутниковых наблюдений в системе NASA Goddard Earth Observation System (GEOS) с трехчасовым разрешением по времени. Содержание озона в атмосфере определялось спектрометрическим измерением его кон-

Рис. 13. Среднемесячные значения дневных сумм суммарной солнечной радиации в январе (сверху) и июле (снизу) (горизонтальная поверхность)

центрации (программа Total Ozone Mapping Spectrometer, TOMS). Основными параметрами в расчетах являлись количество аэрозоля и оптические характеристики облаков. Все результаты пересчитывались на сетку 1°×1° с использованием различных способов пространственного осреднения, билинейной интерполяции и т.д.; в итоге был получен массив данных, покрывающий весь земной шар (64800 регионов – ячеек сетки). Некоторые результаты расчета – карты осредненных за 10 лет среднемесячных дневных сумм суммарной солнечной радиации для января и июля – приведены на рис. 13.

Большое количество различных метеорологических событий в период измерений обеспечивало изменчивость облачности, содержания водяного пара и озона в атмосфере, характеристик ветра и т.д., что привело в результате к межгодичным вариациям данных. Так, 10-летний период (1983–1993 гг.) содержал в себе 3,5 года, в течение которых было явно выражено явление Эль Ниньо, 2 года – Ла Нинья и 4,5 средних по характеристикам года. Тестирование результатов расчетов по базе данных наземных актинометрических измерений Baseline Surface Radiation Network (BSRN) за период с 1983 по 2006 гг. показало, что наиболее точными являются результаты, относящиеся к средним за месяц суммам солнечного излучения. При этом, максимально приближенной к результатам наземных измерений является суммарная солнечная радиация (Табл. 3).

Среднемесячные значения рассеянной солнечной радиации, приходящей на горизонтальную поверхность, и прямой радиации – на нормальную к лучу поверхность определялись на основе массива данных о рассеянной и прямой солнечной радиации который был получен на наземных станциях системы BSRN. Эти измерения, осуществляемые с помощью пиргелиометров, довольно трудно проводить, поэтому они

Систематическая Параметр Регион Среднеквалратичпогрешность (%) ное отклонение (%) Суммарная солнечная Вся земная поверхность -0.0110.25 радиация на горизонтальную 60°-90° с/ю. ш. -1.1834.37 поверхность 0°-60° с/ю. ш 0.29 8.71 29.34 7.49 Рассеянная солнечная Вся земная поверхность 60°-90° с/ю. ш. 11.29 54.14 радиация на горизонтальную 0°-60° с/ю. ш 6.86 22.78 поверхность Прямая солнечная радиация Вся земная поверхность -4.0622.73 60°-90° с/ю. ш. 33.12 на следящую за солнцем -15.660°-60° с/ю. ш 2.40 20.93 поверхность

Результаты сравнительного анализа данных NASA SSE и BSRN для среднемесячных значений падающей солнечной радиации (Июль 1983 – Июнь 2006 гг.)

доступны только для обсерваторий с хорошей оснащенностью, таких, как обсерватории, входящие в систему BSRN.

Для того, чтобы использовать глобальные оценки суммарной солнечной радиации, полученные при осуществлении программы SRB (Surface Radiation Budget, Release 3.0), и получить данные о прямой и рассеянной радиации, специалистами NASA была разработана система полиномиальных уравнений для отношения доли рассеянной радиации, характеризующих эту долю как функцию индекса прозрачности атмосферы. Для оценки прямой радиации, приходящей на нормальную к лучу поверхность, был использован расширенный метод RETScreen [21].

Для оценки рассеянной радиации, приходящей на горизонтальную поверхность, и прямой радиации, поступающей на нормальную к лучу поверхность при ясном небе, были использована соответственно методология Эрбса [22] и собственный метод NASA.

В расчетах падающей на наклонную поверхность солнечной радиации использовалась процедура почасового вычисления «среднемесячного дня», введенного RET-Screen [21], которая в свою очередь использует уравнения Collares-Pereira и Rabl для суммарной радиации [23] и уравнения Liu и Jordan для рассеянной радиации [24].

Наконец, среднемесячная солнечная радиация, приходящая на наклонную по-

верхность рассчитывалась путем суммирования часовых величин в течение «среднемесячного дня». Такие методы расчета менее точны по сравнению с результатами ежедневных измерений, но исследования обоснованности, проведенные RETScreen, показывают, что часовые расчеты «среднемесячного дня» дают для наклонных поверхностей результаты, отличающиеся от почасовых измерений в пределах от 3.9% до 8.9%.

По утверждению разработчиков базы данных NASA, использованные методы

расчета солнечной радиации приводят к результатам, отличающимся друг от друга в пределах 15% для середины лета при угле наклона приемника, равном широте. Различия превышают 15% лишь в зимний период для широт выше 40°.

База данных NASA Surface meteorology and Solar Energy (NASA SSE) [3] содержит результаты многолетних наблюдений за солнечной радиацией и метеорологические данные для сетки 1°×1°, покрывающей весь земной шар. Естественно, эти данные не отражают микроклимат отдельных территорий, и в этом смысле значение качественных наземных измерений велико. С другой стороны, ценность базы данных NASA определяется тем, что она позволяет восполнить недостаток наземных измерений, а там, где они проводятся, дополнить их. В частности, в последней версии программного продукта RETScreen [17] использована комбинированная база климатологической информации, содержащая как данные наземных измерений, так и параметры, полученные из базы данных NASA SSE.